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The structure factor for an arbitrarily decorated Penrose tiling has been

calculated in the average unit cell description. The obtained formula uses only

the physical coordinates of the atoms decorating a structure. The final equation

can be easily extended so that it can describe the other physical properties

of a structure. Its usefulness is demonstrated by its use in the Al–Ni–Co alloy

structure-refinement process.

1. Introduction

A stable decagonal Al–Co–Ni quasicrystal was identified by

Tsai et al. (1989). Its phase diagram was thoroughly studied by

Gödecke & Ellner (1996), and different phases (both deca-

gonal and periodic approximants) were found by Zhang et al.

(1997) and Ritsch et al. (1998). Penrose tiling is the best-

known two-dimensional quasicrystals structure model which

has proven to be an excellent starting point for the structure

refinement of real decagonal quasicrystals (Steurer &

Haibach, 1999; Steurer & Cervellino, 2001; Takakura et al.,

2001). This aperiodic tiling, discovered by Penrose (1974), was

thoroughly studied by Grünbaum & Shephard (1987). There

are many other types of aperiodic plane coverings which are

also identified with the Penrose tiling (Baake et al., 1991). The

structural class of Penrose tilings used throughout this paper,

for the purpose of the refinement process, is classified as

the SMLD class (symmetry-conserving mutually derivable

patterns). We have chosen rhombi as structural units. The

fundamental properties of such rhomb coverings were derived

by de Bruijn (1981).

In most cases the structure of a quasicrystal is analysed by

means of the ‘cut and project’ method, which functions in

high-dimensional space. The method has been widely

discussed in many papers (de Bruijn, 1981; Kramer & Neri,

1984; Levine & Steinhardt, 1984; Duneau & Katz, 1985;

Kalugin et al., 1985; Elser, 1986; Janssen, 1988; Jagodzinski,

1991; Hof, 1995, 1997; Senechal, 1995). According to the ‘cut

and project’ method, the analysis of the Penrose tiling involves

the use of the five-dimensional space with the two-dimensional

physical space and the three-dimensional inner space (perp-

space). The structure is represented by its atomic surface

which provides statistical information on high-dimensional

atomic coordinates and which, in the case of the Penrose tiling,

consists of two small and two large pentagons. The method

provides a simple though abstract description of the quasi-

crystalline structure. It has some drawbacks, too. For instance,

it is not easy to incorporate dynamic structural properties into

a structure model. Randomness or structural defects are other

issues which are not easily accessible by this method (Elser,

1986; Baake et al., 2003).

In this paper we outline calculations based on a statistical

method called the average unit cell (AUC) approach (Wolny,

1998) which lead to the structure factor for two-dimensional

Penrose tiling. The method described, after extension to the

third physical (see x3.5) dimension, proves to be successful in

a real quasicrystal structure refinement (Wolny et al., 2008;

Kuczera, Kozakowski et al., 2010; Kuczera, Wolny & Steurer,

2010; Kuczera, Strzałka & Wolny, 2010). This paper is a

general review of the theoretical work done on the develop-

ment of the AUC approach for decagonal quasicrystals. The

main concept of the paper is based on a theoretical work

published in arxiv (Kozakowski & Wolny, 2005). Since then,

the concept of the AUC has proven to be useful for various

practical applications and, as the above was the only referral

paper for a citation of the source of the AUC theory for the

decagonal rhomb Penrose tiling, we have decided to modify it

appropriately and publish it in print.

The multidimensional approach allows us to describe both

modulated structures and quasicrystals by substituting atoms

with their multidimensional equivalents, i.e. atomic surfaces.

The paper shows that an AUC and an atomic surface are

related by an oblique projection onto the physical space.

Consequently, these two methods, in the case of perfect

structures, can be considered as equivalents and they can be

used interchangeably. The focal point, however, is the fact that

a multidimensional approach assumes the structure to be

periodic while the AUC approach does not require such an

assumption.

There are examples of structures for which the multi-

dimensional approach fails and the AUC does not. Such a

structure is the Thue–Morse sequence (Wolny et al., 2000;

Wnęk et al., 2001). The AUC approach makes it possible to

conduct precise numerical calculations (with the use of integer

numbers only) for an almost unlimited number of atoms. The

resulting outcomes produce accurate values of fractal scale



factors of diffraction peaks, for both commensurate and

incommensurate values of these factors.

Another example of a situation in which the multi-

dimensional approach cannot be successfully applied is an

analysis of a structure that produces a diffraction pattern

containing not only an atomic component but also a contin-

uous one. The paper by Orzechowski & Wolny (2007) shows

how the AUC approach can deal with such a situation. The

results give a new perspective on utilizing the entire

diffraction pattern and not only Bragg peaks in a refinement

process.

2. Average unit cell

An average unit cell is a concept which allows us to enforce

periodicity on any structure, even on those which are not

periodic or ordered. In order to define an AUC, a reference

frame must be introduced. A reference frame is a set of

parallel planes periodically arranged with the lattice constant

�. The position of any point placed along this lattice is

measured with reference to the nearest leftward plane of the

lattice. In other words, if the original atomic coordinates were

denoted by r and their reference frame equivalents were

denoted by u, then the following relationship would exist

between these two sets of coordinates,

un � rn modð�Þ: ð1Þ

In the case of periodic crystals, a reference frame simply

defines a unit cell. When it comes to aperiodic structures such

as quasicrystals, the coordinates of which are defined by a

combination of an integer number and an irrational one, � =

(1 + 51/2)/2, the definition (1) is insufficient to give a mean-

ingful description of the structure. In such cases it is preferable

to describe a structure in probability terms, i.e. by stating the

probability P(u) of finding an atom within the interval

stretched between coordinates (u; u + du). P(u) defines an

AUC, which is a probability distribution of atomic positions

expressed with respect to a reference frame.

The AUC of a Fibonacci chain is a rectangular function

(Senechal, 1995; Buczek et al., 2005). In the case of Penrose

tiling, the AUC consists of four pentagons (Wolny & Koza-

kowski, 2003). In Appendix A it is proven that there is a one-

to-one relationship between the AUC and the atomic surface

for a perfect Penrose tiling.

The crux of the method lies in the properties of the dot

product k � r, which is a part of the structure-factor phase. The

dot product defines the projection of the entire structure in the

direction of the wavevector. Consequently, the calculations

are conducted for a one-dimensional structure stretched along

this direction. Furthermore, a phase factor can be reduced by

the multiplication of 2�. From the point of view of a diffrac-

tion analysis, this can be considered as a coordinate reduction

to a single AUC. Such an approach allows us to determine the

intensities of a periodic set of diffraction peaks positioned at

multiples of k. These peaks are often referred to as the main

peaks. In order to calculate the intensities of peaks situated

among the main ones, another wavevector must be introduced,

the modulated wavevector q. The peaks associated with q are

often called the satellite peaks. Usually, for simplicity, we

choose a parallel k and q. If, additionally, they are incom-

mensurate, their linear combination can lead to almost any

point (within experimental accuracy) situated along the

chosen direction. The only problem underlying the analysis is

the fact that two separate AUCs must be defined for both

vectors k and q. In many cases, however, these two AUCs are

related to each other and the relationship can be used in

further calculations. The application of the AUC approach

significantly simplifies numerical calculations.

For quasicrystals, such as the one-dimensional Fibonacci

chain, two-dimensional SMLD Penrose tiling or decagonal

and icosahedral structures, the relationship between AUCs for

k and q vectors is linear (which is shown in the paper). As a

result, the multidimensional integrals can be easily trans-

formed into one-dimensional ones. The phase factors obtained

from those integrals are constant for a particular structure;

they do not change during the refinement process. All the

calculations are conducted only within the physical space

coordinates.

3. Derivation of the structure factor

3.1. Model assumptions

There are many structural approaches to the basic structure

of decagonal quasicrystals. Even the most basic model, the

Penrose SMLD class, can be described by clusters, rhombi,

Robinson triangles or kites and darts (Baake et al., 1991). We

decided to base our calculations mainly on the rhombi

model (and thus we use the term ‘Penrose tiling’ when refer-

ring to a SMLD class covered by rhombi) as this is the

most commonly used one. However, in the further part of the

paper, we introduce an AUC approach to the cluster model as

well.

There are two types of rhombi: a thin and a thick one. Each

of them can be found in ten variants rotated with respect to

each other at an integer multiple of the angle �/10. If we

assume the tenfold diffraction symmetry, we can focus our

attention only on one pair of rhombi. The ones we selected

as structural units are shown in Fig. 1. After choosing the

framework, the structural units can be decorated. The position

of an atom put into a rhombus is given in relation to the

highlighted vertices. Additionally, we assumed that if an atom

is put along a side of a rhombus, then there are only 0.5 atoms

in the unit. If an atom is placed at a vertex, it is counted as a

fraction proportional to the angle of the vertex given as a part

of the full angle.

An AUC for any of these structural units turns out to be of

a triangular shape (Fig. 2). The exact coordinates of these

triangles’ vertices are calculated in Appendix B.

During the derivation of the structure factor, to make the

calculation simpler, we omit atomic factors as well as the

Debye–Waller factors and the third periodic coordinate z of

decorating atoms. All these factors will be taken into account

in the final form of the structure factor.
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3.2. Reference frames

We use four different reference frames for positioning an

atom of the Penrose tiling and three sets of reference scat-

tering vectors for positioning diffraction peaks.

(i) The natural, periodic frame. According to the cut-and-

project method (de Bruijn, 1981; Kramer & Neri, 1984; Levine

& Steinhardt, 1984), a Penrose tiling can be represented by a

set of regularly distributed points situated within the bound-

aries of a projection strip submerged in the five-dimensional

space. The positions of a point can be expressed in such a

situation as R[ ] = A[a1, a2, a3, a4, a5] (rectangular parenthesis;

a1 . . . a5, integer numbers). The definition of reciprocal space

is straightforward: K[ ] = (2�/A)[h1, h2, h3, h4, h5], where

h1 . . . h5 are integer indexes. The symbol A represents the five-

dimensional lattice constant. Although we have five dimen-

sions, only four main scattering vectors are needed to index

the entire diffraction pattern. This assumption is proven in

section (ii). The simplest choice for basis vectors would be

[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0] and [0, 0, 0, 1, 0].

However, for the effective use of an AUC, we chose another

basis vector: K1 = (2�/A)[0, 0,�1,�1, 0]; K2 = (2�/A)[�1,�1,

0, 0, 0]; Q1 = (2�/A)[1, 0, 0, 0, 0] and Q2 = (2�/A)[0, 0, 0, 1, 0].

This choice will be explained in one of the subsequent

sections.

(ii) The frame stretching the external and internal spaces. A

periodic frame, defined above, can be rotated so that two of

its axes encompass the physical (external) space, and the

remaining three the perpendicular (internal) space. In such a

case the position vector R{ } is defined as R{ } = {r||, r?} = {x, y,

x?, y?, z?} and the scattering vector is defined as K{ } = {k||, k?}

= {kx, ky, kx?, ky?, kz?}. The symbol ‘||’ or lack of a subscript

indicates the physical coordinates and the symbol ‘?’ indicates

the perpendicular ones.

The transition matrix T for both direct and reciprocal spaces

is

T ¼
2

5

� �1=2

c1 c2 c3 c4 c5

s1 s2 s3 s4 s5

c2 c4 c6 c8 c10

s2 s4 s6 s8 s10

1=ð21=2Þ 1=ð21=2Þ 1=ð21=2Þ 1=ð21=2Þ 1=ð21=2Þ

2
66664

3
77775

ð2Þ

where cj = cosð2�j=5Þ, sj = sinð2�j=5Þ. We obtain new coordi-

nates by calculating them as R{ } = TR[ ] and K{ } = TK[ ].

It can be easily noticed that every multiple of a vector

(2�/A)[1, 1, 1, 1, 1] always leads to the same point k = (0, 0).

One of the coordinates of the periodic frame is then redun-

dant. We chose to eliminate the fifth one, i.e. h5 = 0, and

therefore we only use four of them to index the entire set of

diffraction peaks.

By means of the introduced transition matrix, we can

establish a relationship between the five-dimensional lattice

constant A and the length of a rhombus side a. It is well known

that the Penrose tiling is built of thick and thin rhombi. The

positions of their vertices are the result of a projection of five-

dimensional points, lying within a projection strip, on the

physical space. After a projection, every two neighbouring

points, i.e. the ones which are separated by the distance A,

become vertices of a rhombus. This leads to the relationship

A = a(5/2)1/2. In every further equation, A will be substituted

by this outcome.

The transition matrix can also be used to calculate the

physical and perpendicular coordinates of vectors K1, K2, Q1,

Q2 introduced in the previous section. The outcome reads

K1 ¼ 4�=5að Þ c1�; s1�; c2ð� � 1Þ; s2ð� � 1Þ;� 1
� �

;

K2 ¼ 4�=5að Þ c1�;� s1�; c2ð� � 1Þ;� s2ð� � 1Þ;� 1
� �

;

Q1 ¼ 4�=5að Þ c1; s1; c2; s2; 1=2
� �

;

Q2 ¼ 4�=5að Þ c1;� s1; c2;� s2; 1=2
� �

:

ð3Þ

The ‘{ }’ subscript indexes are skipped.
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Figure 2
The procedure for obtaining the shape of the probability distribution for
positions of thick rhombi. Details are provided in Appendix B. The shape
found and subsequently projected onto the physical space becomes the
AUC which is proven in Appendix A.

Figure 1
The rhombi selected as structural units. The coordinates of an atom
decorating a rhombus are given in relation to the central point. Here they
are denoted as (�x, �y). In the background there are dotted lines which
show the directions of the five-dimensional basis vectors projected onto
the physical space. Their five-dimensional coordinates are given in square
brackets.



The physical coordinates of these vectors are the basis

vectors we use to index a diffraction pattern. They are

k1 ¼ ð4��=5aÞðc1; s1Þ; k2 ¼ ð4��=5aÞðc1;�s1Þ;

q1 ¼ ð4�=5aÞðc1; s1Þ; q2 ¼ ð4�=5aÞðc1;�s1Þ: ð4Þ

The lengths of k1 and k2 are of equal value. We denote it as k0 ,

k0 � jk1j ¼ jk2j ¼ ð4��=5aÞ ’ 4:067=a: ð5Þ

The same holds true for q1 and q2, although their length is �
times shorter than k0 ,

q0 ffi jq1j ¼ jq2j ¼ k0=�: ð6Þ

Other properties of these vectors are:

(a) k1 and q1 are parallel and the same holds for k2 and q2 ;

(b) the angle between k1 and k2 is 4�/5.

(iii) Average unit cell frame. The reciprocal vector basis

consists of vectors defined in the previous section, i.e. k1, k2,

q1, q2. Vectors k1 and k2 are called the main vectors and q1 and

q2 are vectors of modulation.

According to the theory on modulated structures, the length

of the vector of modulation q must be related to the structure

modulation. It is also practical to choose such a q so that it is

parallel to the k vector. The basis chosen meets these condi-

tions. The position of any diffraction peak is the linear

combination of these vectors,

k ¼ n1k1 þm1q1 þ n2k2 þm2q2:

Symbols n1, n2, m1 and m2 are diffraction indexes which are

used in the AUC approach.

An average unit cell based on these vectors would be highly

impractical to manage. It would be unintuitive to give atoms’

coordinates in an oblique reference frame. Therefore, for the

purpose of the construction of an AUC, we converted the

reciprocal vector basis into the Cartesian reference frame, in

which the coordinates kx and ky of the k vector are equal to

kx ¼ k0c1ðn1 þ n2Þ þ q0c1ðm1 þm2Þ;

ky ¼ k0s1ðn1 � n2Þ þ q0s1ðm1 �m2Þ: ð7Þ

In such a situation the average unit cell frame is defined by

four lattice constants,

�ux ¼ 2�=ðk0c1Þ; �vx ¼ 2�=ðq0c1Þ;

�uy ¼ 2�=ðk0s1Þ; �vy ¼ 2�=ðq0s1Þ:

The position of an atom can be expressed either by (ux, uy)

coordinates (0 � ux < �ux and 0 � uy < �uy) or by (vx, vy)

coordinates (0� vx < �vx and 0� vy < �vy). Furthermore, these

two pairs of coordinates are not independent of each other. As

proven in Appendix A, when an atom assumes the position

(ux, uy) then its (vx, vy) coordinates are equal to

vx ¼ ��
2ux þ cx and vy ¼ ��

2uy þ cy:

The constants cx and cy depend on the position of the origin of

the reference frame. The density function stretched over these

coordinates is the AUC of an examined quasicrystal: P(ux, uy).

(iv) Rhombi frame. The main purpose of the structure

analysis is to find the positions of atoms decorating the

structural units. In our case they are a thick and a thin

rhombus. Fig. 1 shows the rhombi we have assumed as unit

structures. The coordinates (�x, �y) of any decorating atom

are given with reference to the highlighted points. There is an

obvious relationship between the coordinates of an atom

decorating a rhombus and the corresponding coordinates of

the probability distribution associated with this atom. If we

move an atom from the origin and the displacement is equal to

(�x, �y), then the probability function will move within the

boundaries of an AUC along the vector (�ux, �uy) = (�x, �y)

unless �x > �ux or �y > �uy . In such a situation

ð�ux;�uyÞ ¼ ð�x� ��ux;�y� ��uyÞ; ð8Þ

where � is an integer satisfying the condition 0 � ux < �ux and

0 � uy < �uy.

3.3. Structure factor for perfect decagonal quasicrystals:
a general case, the AUC approach

The structure factor for any set of points reads

FðkÞ ¼ lim
N!1

1

N

XN

j¼1

exp irj � k
� �

; ð9Þ

where rj is the position vector of the jth atom and N is the total

number of atoms.

As already pointed out, in the case of decagonal quasi-

crystals, the scattering vector k reads: k = n1k1 + m1q1 + n2k2 +

m2q2. The exponent of (9) is then equal to

rj � k ¼ rj � n1k1 þ n2k2 þm1q1 þm2q2ð Þ: ð10Þ

After a projection of the scattering vectors on the Cartesian

frame the dot product reads

rj � k ¼ n1 þ n2ð Þxjk0c1 þ n1 � n2ð Þyjk0s1

þ m1 þm2ð Þxjq0c1 þ m1 �m2ð Þyjq0s1; ð11Þ

where rj = (xj , yj).

It is worth noticing that the calculation of the dot product

r �k leads to the projection of a position vector on the direc-

tions of the basis scattering vectors. Thus, for every scattering

vector we can conduct separate one-dimensional calculations,

i.e. use a one-dimensional reference frame.

To make use of the AUC approach, we express yj and xj by

four new coordinates,

xj ¼ uxj þ �ux�ux; �ux ¼ 2�=ðk0c1Þ;

xj ¼ vxj þ �vx�vx; �vx ¼ 2�=ðq0c1Þ;

yj ¼ uyj þ �uy�uy; �uy ¼ 2�=ðk0s1Þ;

yj ¼ vyj þ �vy�vy; �vy ¼ 2�=ðq0s1Þ: ð12Þ

where �ux, �uy, �vx, �vy are integer numbers.

The dot product then reads

rj � k ¼ nxðuxj þ �ux�uxÞk0c1 þ nyðuyj þ �uy�uyÞk0s1

þmxðvxj þ �vx�vxÞq0c1 þmyðvyj þ �vy�vyÞq0s1;

which is equal to
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rj � k ¼ nxuxjk0c1 þ nyuyjk0s1 þmxvjq0c1

þmyvjq0s1 þ 2�ð�ux þ �uy þ �vx þ �vyÞ: ð13Þ

The obtained result is then inserted into (9). Additionally, the

relationship q0 = k0 /� is used and the integer multiple of 2� is

neglected. The resulting formula is

FðkÞ ¼ lim
N!1

1

N

XN

j¼1

exp
n

ik0

h
nxc1uxj þ nys1uyj

þ
1

�
mxc1vxj þmys1vyj

� �io
: ð14Þ

Since the coordinates are limited by the size of the AUC, the

summation can be replaced by an appropriate integration over

the AUC [a strict mathematical justification of this step can be

found in Cervellino et al. (2002)],

FðkÞ ¼
R�ux

0

R�vx

0

R�uy

0

R�vy

0

P ux; uy; vx; vy

� �

� exp
n

ik0

h
nxc1ux þ nys1uy þ

1

�
mxc1vx þmys1vy

� �io

� dux duy dvx dvy: ð15Þ

As has already been mentioned, a relationship exists between

coordinates vx(ux) and vy(uy). A strict derivation of these

formulas can be found in Appendix A. The results are

vx ¼ ��
2ux þ ax and vy ¼ ��

2uy: ð16Þ

The constant coefficient ax could be omitted if the origin of the

reference frame (VxUx) was appropriately positioned. Let us

introduce ux0 and vx0 shift parameters which move the origin

in such a way that the relationship vx(ux) can be written as vx =

��2ux . Making use of these two equations and the shift

parameters along with the integration

R�vx

0

R�vy

0

P ux; uy; vx; vy

� �
dvx dvy ¼ P ux; uy

� �
;

we obtain

FðkÞ ¼
R�ux

0

R�uy

0

P ux; uy

� �

� exp
n

ik0

h
nx � �mxð Þc1ux þ ny � �my

� �
s1uy

� c1

�
nxux0 þ

1

�
mxvx0

	io
dux duy: ð17Þ

After introducing new variables

�x ¼ nx �mx�ð Þ � k0c1

�y ¼ ny �my�
� �

� k0s1

’0 ¼ c1 nxux0 þ
1

�
mxvx0

� �
;

ð18Þ

the formula reads

Fð�x; �yÞ ¼
R�ux

0

R�uy

0

P ux; uy

� �
exp i �xux þ �yuy � ’0

� �
 �
dux duy:

ð19Þ

For Penrose tiling, P(ux, uy) is represented by a probability

distribution consisting of four pentagonal areas for which the

function P assumes a constant value. There is a strict rela-

tionship between these pentagons and the atomic surface. One

can be converted into the other by an oblique projection. The

calculations leading to this relationship are provided in

Appendix A. The resulting AUC, unlike the atomic surface, is

asymmetric. In order to perform any symmetrical operation,

regularity must be given back to the distribution. This is

achieved by introducing new re-scaled coordinates. The final

results must, however, be scaled back to their original

proportion.

Appendix A also gives the exact formula for ’0 . Its value

depends on the relative distance between four pentagons. If

we numbered the pentagons according to their z? coordinate

(i.e. j = 1 and 4 for the thin ones and j = 2 and 3 for the thick

ones) then we could rewrite (19) as

Fð�x; �yÞ ¼
P4

j¼1

R�ux

0

R�uy

0

Pj ux; uy

� �
exp



i
�
�xux

þ �yuy � ’j0

��
dux duy; ð20Þ

with ’j0 = j(2�/5a)(�2nx + mx). Equation (20) provides the

structure factor for the perfect Penrose tiling.

3.4. Structure factor for freely decorated Penrose tiling

Equation (20) needs only slight modification to allow it to

describe freely decorated Penrose tilings. The procedure is as

follows.

(a) Two elementary units: one thick and one thin rhombus

are selected from the perfect Penrose tiling. They are shown in

Fig. 1.

(b) An AUC is calculated for each of these units. Their

shape is triangular. The coordinates of these distributions’

vertices and the method for extracting them is presented in

Appendix B. The probability distribution for thick rhombi is

denoted by �L and by �S for thin ones.

(c) There are ten variants of each unit structure. We obtain

their probability distributions by rotating the one found for

the unit structures. As in the case of the perfect Penrose tiling,

the AUC is not symmetrical. Therefore, to make the rotation

significant, the distribution is stretched so it becomes regular;

it is then rotated and finally the original proportions are given

back to the first one by the inverse operation. To show that a

distribution is dependent on the rotation, symbols assigned to

the distribution probability are extended to �L(�) and �S(�),

where � is an integer multiple of 2�/5.

(d) A shift of an atom from the frame’s origin [the frame is

introduced in x3.2(iv)] is taken into consideration by multi-

plying the structure factor by the phase factor exp(ik�r). The

shift vector is denoted by �rLn(�) for an nth atom decorating

a thick rhombus; it is �rSn(�) for an equivalent of a thin

rhombus. � indicates that, along with distributions, the posi-

tions of decorating atoms must be rotated as well.

(e) If an atom is placed along a rhombus’s side or in its

vertex, only a fraction p of this atom is included (see x3.1) in
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the structure-factor calculations. The notation for the nth

atom is pLn (for a thick rhombus) and pSn (for a thin one).

( f) Finally, the overall structure factor is the sum of struc-

ture factors given for each atom decorating the structure units.

(g) To simplify the calculation, only the real part of the

structure factor is taken into account. This is possible as an

AUC for a Penrose tiling is an even function (i.e. inversion is a

pseudo-symmetric element of the tiling). The final form of the

structure factor is

FðkÞ ¼ re
PnL

n¼1

FLn kð Þ þ
PnS

n¼1

FSn kð Þ

� 
; ð21Þ

where nL and nS are the numbers of atoms decorating the thick

and thin rhombus and FLn and FSn are structure factors for the

nth atom associated with these structural units. They are equal

to

FLnðkÞ ¼ pLn

P4

�¼0

TL k; �ð Þ exp i�rLn �ð Þ � k

 �

; ð22Þ

FSnðkÞ ¼ pSn

P4

�¼0

TS k; �ð Þ exp i�rSn �ð Þ � k

 �

; ð23Þ

where

TL;S k; �ð Þ ¼
R R
�L;S �ð Þ

exp i �xux þ �yuy � ’0

� �
 �
dux duy;

’0 ¼ ð2�=5aÞð�2nx þmxÞ: ð24Þ

Values of the Fourier transformations of triangular distribu-

tions are discussed in Appendix C.

3.5. Structure factor for the refinement process

The structure factor as given above is appropriate only for

model numerical structures. It needs to be extended in order

for it to be used in a refinement process. The following

discussion applies to the nth atom of any structure unit.

Factors which must be included in the Al–Ni–Co quasicrystals

structure-factor equation are as follows.

(a) The occupation probability, pn
sof .

(b) If the quasicrystalline sample is a mixture of transition

metals TM and a light metal (such as Al), then the concen-

tration coefficients used are pTM for the transition metal and

pAl = 1 � pTM for Al.

(c) The atomic form factors for TM and Al, fTM and fAl.

(d) The average atomic form factor is a combination of all

the above listed factors,

fn ¼ pn
sof pn

TM f n
TM þ ð1� pn

TMÞ f
n
Al


 �
: ð25Þ

(e) The Debye–Waller factor DL,

Dn ¼ exp �ð1=16�2Þ k2
x þ k2

y

� �
bn

xy � ð1=16�2Þk2
zbn

z


 �
; ð26Þ

where bxy is the average displacement parameter in the

quasiperiodic plane and bz is the displacement parameter in

the c direction.

( f) The z coordinate. Decagonal quasicrystals are periodic

along the third physical dimension ‘z’. There are two or four

layers (Steurer & Cervellino, 2001; Takakura et al., 2001)

which when projected onto the XY plane form the Penrose

tiling. If we denote the period as c, then this additional

dimension can be inserted into the structure factor by multi-

plying it by exp(il�), where l is a diffraction index and � is a

fraction of c.

(g) The phason Debye–Waller factor DPh,

DPh ¼ exp �ð1=16�2Þ k2
?x þ k2

?y

� �
bPh


 �
; ð27Þ

where bPh is the phason displacement parameter.

After the application of all these factors, the final form of

the structure factor for a thick rhombus reads

FLnðkÞ ¼ Dph pLn fnDn

P4

�¼0

TL k; �ð Þ exp i�rLn �ð Þ � kþ l�

 �

:

ð28Þ

For a thin rhombus the final outcome is similar.

3.6. Structure refinement of Al72Ni20Co8

The theory presented has been used to refine the well

known (Takakura et al., 2001; Cervellino et al., 2002) Al–Ni–

Co structure model. The results are discussed by Wolny et al.

(2008) in detail. Here we present only the final outcome.

The unit structures of the Penrose tiling were divided three

times with obedience to the inflation rules. An atom is put at

every position from the zeroth, first, second and third division.

To fulfill the density restriction, additional atoms were put at

several positions of the fourth division. In total, we used 65

decorating atoms.

The optimization was performed on a set of 449 distinct

reflections (Takakura et al., 2001). Atoms decorating the

structure units were divided into 19 groups. This division is

shown in Fig. 3. For each group we optimized a shift from

Penrose tiling positions in the quasiperiodic plane (Dx, Dy),

the occupation probability for vertices, the concentration of

TM atoms and two components of the Debye–Waller factor.

We obtained an R factor of 8.0% and an Rw factor of 6.1%.

The resulting Fobs /Fcalc graph is shown in Fig. 4. In total, 92

parameters were refined. The refined shift parameters are very

small (of the order of 1% of the lattice constant) which stems

from the fact that atomic positions are very close to the initial

coordinates of the Penrose tiling. The resulting structure has
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Figure 3
The initial decoration for the refinement procedure for the Al72Ni20Co8

structure. Atoms were divided into 19 groups. Each group is represented
by a different symbol. TM is either Ni or Co. The figure presents results
more thoroughly discussed by Wolny et al. (2008).



the exact chemical composition of Al72TM28 . Our model also

gives good density values. The refined structure has a point

density of 0.0663 Å3 and an overall density of 3.89 g cm�3.

Recently, the AUC approach was successfully used to refine

the structures of other decagonal phases reported in the Al–

Ni–Co system, including the so-called superstructure type I

phase, also known as the Edagawa phase (Kuczera, Koza-

kowski et al., 2010; Kuczera, Wolny & Steurer, 2010). No other

qualitative structure analysis of the Edagawa phase has been

performed yet. The first attempt at the application of this

method to Amman tiling, i.e. the three-dimensional general-

ization of the Penrose tiling, also looks very promising

(Kuczera, Strzałka & Wolny, 2010).

4. Penrose tiling cluster model

The method for deriving a structure factor based on the AUC

approach, as described in the previous sections, is a universal

one. It can be applied to any type of structure (periodic,

aperiodic, random) and to any model of the Penrose tiling.

Having a few different models of the same structure gives us a

chance to compare their results, study the differences or

incorporate the most significant conclusions stemming from

them in the final model of the examined structure. In this

section the main points leading to the derivation of the

structure factor for the Penrose tiling will be repeated for a

cluster model of this quasiperodic structure.

A cluster that is mostly associated with the Penrose tiling is

Petra Gummelt’s cluster (Gummelt, 1996). It consists of 33

atoms forming a circular figure (Fig. 5). One can prove that,

owing to the atomic overlapping, these 33 atoms can be

divided into only three groups of points that do not overlap

each other and can consequently be decorated with different

types of atoms.

Another set of clusters, called kite clusters, have been

introduced and thoroughly studied (Dąbrowska et al., 2005).

Consecutive members of this set are interrelated with each

other by means of the inflation rules. The smallest cluster, K4,

consists of four points divided into two independent groups.

The next one, K7, consists of seven points (three independent

groups) and the following one is K17 (Fig. 5), built of 17 points

(seven independent groups). The entire infinite family of these

clusters is described by Duda et al. (2007).

The kite clusters give an alternative method for the

description of the Penrose tiling. Because of the overlapping

rules the structure they form is more rigid. However, this

rigidity enforces the local five-dimensional symmetry and

reduces the number of optimized parameters during the

refinement process. Furthermore, the relative number of

atoms belonging to different groups of cluster’s atoms is

comparable with the chemical composition of real quasicrys-

tals. They are, then, a good starting point for a refinement

procedure.

The procedure for the structure-factor derivation is analo-

gous to the one presented in the context of the Penrose tiling

rhombic model. It proceeds as follows:

(i) We set a reference point within the boundaries of a

cluster. Then, we establish the area of the atomic surface that

would represent the distribution of the reference point. As in

the case of the rhombic model, again the area is triangular.

(ii) The area found is projected onto the physical space. As

a result, we obtain an AUC for clusters directed at a specific

direction.

(iii) Filling the cluster with atoms takes place as in the

rhombic model. The distance between the coordinates of an

atom and the reference point is equal to the distance of this

atom’s distribution within the Penrose tiling and the distri-

bution of the reference points.

(iv) The first difference, when compared with the rhombic

model, occurs when one needs to take the overlapping areas

into consideration. Since the overall probability distribution

for the Penrose tiling is flat, the overlapping areas need to be

merged and their level must be reduced to the constant

intensity. After merging all the overlapping atoms, we obtain

disjoint areas of non-overlapping atoms. They can be of
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Figure 4
The amplitude of the structure factor observed in the experiment (Fobs)
versus the calculated one (Fcalc) for the Al72Ni20Co8 model based on the
AUC approach. The figure presents results more thoroughly discussed by
Wolny et al. (2008).

Figure 5
Gummelt’s cluster G33 and the family of kite clusters. The K17 cluster is
shown both inscribed in G33 (on the left site, dashed lines) and separately
(on the right side). K7 and K4 are shown inscribed in G33, K7 the
continuous line and K4 the dotted one. Atoms of different type (the non-
overlapping ones) are marked with different symbols.



different types. The final division of the atomic surface for the

K17 cluster is shown in Fig. 6.

(v) The sum of the Fourier transforms for all these areas

leads to the structure factor for the cluster model of the

Penrose tiling. The resulting formula is as follows:

F �x; �y

� �
¼ re

nPtmax

t¼1

P2

j¼1

exp i’j

� �

�
P4

�¼0

R R
Tt;j;�

exp i �xux þ �yuy

� �
 �
dux duy

o
; ð29Þ

where ’j = j’0 , tmax is the number of independent areas and in

the case of cluster K17 it is equal to 7, and Tt,j,� is a triangular

area number t of orientation � and lying on a pentagon for

which j = z? . The remaining symbols are as in equations (21)–

(24).

(vi) The structure refinement involves establishing the types

of atoms which decorate the areas, the occupation probability

and the Debye–Waller factor.

While modeling the quasiperiodic structure, we can take

into account both the cluster and the rhombic models. The

rigidity of the first one can be of significant advantage during

the initial part of the refinement. Only after the R factor is

reduced to a level of 10% and lower can the atomic positions

be released and refined as in the rhombic model. Following

this procedure we obtained the resulting 8% R factor for the

Al–Ni–Co alloy which was described above.

5. Conclusions

The applications of the average unit cell approach demon-

strated in this paper are only the most essential ones and do

not encompass the entire usability of the method. In this paper

we limited the calculations to those which are needed to prove

the AUC as an equivalent method to the multidimensional

one. In the case of a perfect structure both methods lead to

analogous results.

The AUC approach is nonetheless more flexible than the

multidimensional method. Firstly, this is so since the AUC can

be applied to the refinement of any type of structure, not only

quasicrystals but also, for instance,

periodic crystals, modulated structures

(Urban & Wolny, 2006), disordered

structures (Orzechowski & Wolny,

2007) or structures for which the

diffraction peak intensities scale frac-

tally (Wolny et al., 2000). The flexibility

stems from the AUC’s ability to work

with the probability distributions of

the physical atomic positions. Secondly,

the interpretation of the parameters is

much more intuitive under the AUC

approach, as they all have a strict

and clear physical meaning. Thirdly,

the method allows the equation of a

structure factor to be extended in a

manner identical to the one known from periodic crystals, and

new parameters (for instance, the Debye–Waller factor or the

shift from the initial position) immediately gain physical

interpretation, while in order to incorporate new parameters

in the multidimensional approach one needs to look for

their multidimensional equivalents. Finally, under the AUC

approach, taking atomic disorder into consideration comes

with minimal burden for the method.

We obtained an analytical expression for the structure

factor of freely decorated Penrose tiling using the average unit

cell approach. Similar calculations for one-dimensional

quasicrystals were presented by Wolny & Kozakowski (2003).

The obtained formula (21) is very similar to the well known

expression for periodic crystals. It consists of phase factors

[exp(ik �r)] multiplied by the set of T(k) values, which are the

same for all possible decorations. This brings full parallelism

between the structure factor for quasicrystals written in the

physical space and the structure factor for periodic crystals.

The obtained formula makes use of only the physical atomic

coordinates. This can then be easily extended, so that it could

describe other physical properties of a structure that are

accessible by the structure factor used to analyze periodic

crystals.

The structure factor was tested on several differently

decorated two-dimensional quasicrystals. Additionally, it was

used to conduct the structure refinement of the Al–Ni–Co

alloy. The resulting low value of the R factor proves the

usefulness of the method.

APPENDIX A
Oblique projection

The aim of this section is to derive a relationship between an

AUC and an atomic surface. The relationship found will

enable us to calculate theoretical coordinates of a probability

distribution and prove the equations (16).

The starting point is an equation stating that for periodic

crystals the dot product written between a reciprocal vector

pointing to a diffraction peak and a position vector K �R must
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Figure 6
The division of the Penrose tiling’s atomic surface into regions representing seven types of non-
overlapping atoms decorating the K17 cluster: T1 , atoms No. 1, 17; T2 , 5, 6; T3 , 7, 10, 14; T4 , 3, 8, 11,
13, 16; T5 , 12; T6 , 2, 9; T7 , 4, 15.



be equal to a multiple of 2�. As K �R is a part of the complex

exponent, 2� can be omitted and the resulting formula reads

expðiK � rÞ ¼ exp iðk? � r? þ kjj � rjjÞ

 �

¼ 1: ð30Þ

The exponent can be rewritten as

nx kxux þ k?xx? þ k?zz?
� �

þ ny kyuy þ k?yy?
� �

þmx qxvx þ q?xx? þ q?zz?
� �

þmy qyvy þ q?yy?
� �

¼ 0: ð31Þ

The last equation must be satisfied for any values of indexes

nx , ny , mx , my . This is possible only if

kxux þ k?xx? þ k?zz? ¼ 0;

kyuy þ k?yy? ¼ 0;

qxvx þ q?xx? þ q?zz? ¼ 0;

qyvy þ q?yy? ¼ 0:

ð32Þ

Solving this system of equations with respect to ux, uy , vx , vy

leads to

ux ¼ �
k?x

kx

x? �
k?z

kx

z?;

uy ¼ �
k?y

ky

y?;

vx ¼ �
q?x

qx

x? �
q?z

qx

z?;

vy ¼ �
q?y

qy

y?:

ð33Þ

We conclude:

(i) The formulas obtained relate the perpendicular coordi-

nates of an atom with its position in an AUC. The transfor-

mation is linear, therefore we can interpret it as a projection of

points of an atomic surface onto an AUC along directions

given by ratios of appropriate coordinates of reciprocal basis

vectors. Any distribution found within boundaries of an

atomic surface, after a transformation, can be used as a

probability distribution in an AUC approach. For instance, for

the entire Penrose tiling, the AUC found numerically consists

of four pentagons, the vertices of which are related to the

atomic surface by the relationships (33).

(ii) The atomic surface of a Penrose tiling is regular. The

corresponding AUC is usually not. This is so because the ratios

k?x /kx and k?y /ky are not equal.

(iii) The relationships vx(ux) and vy(uy) can be found by

eliminating x? in the first and third equations and y? in the

second and fourth ones. The resulting formulas are

vy ¼
q?y

qy

�
ky

k?y

uy ¼ ��
2uy;

vx ¼
q?x

qx

�
kx

k?x

ux þ
q?x

qx

kx

k?x

k?z

kx

�
q?z

qx

� �
z?

¼ ��2ux � �2 k?z

kx

�
q?z

qx

� �
z?:

ð34Þ

The proof for ratios (q?/k?)(k/q) being equal to ��2 is easy

although lengthy; it will therefore be omitted. To prove this,

one needs to find a general relationship among five-

dimensional indexes when the physical coordinates are

extended � times. This relationship applied to the perpendi-

cular coordinates would shorten them � times. The set of basis

vectors chosen for the AUC approach can illustrate this

relationship. When the exact values of their coordinates are

used, equations (34) read

ux ¼ �x? þ 2z? ; uy ¼
1

�3
y?;

vx ¼ �
2x? � � � z? ; vy ¼ �

1

�
y?:

The discussed relationship (16) becomes apparent.

(iv) Equations (34) give reason for introducing parameters

ux0 and vx0 . Areas projected along x directions are not only

linearly transformed but are also shifted (ux0 = �z?k?z/kx and

ux0 = �z?q?z/qx). To keep the relationship vx = ��2ux valid,

we need to add a phase factor as was done in the equation for

every pentagon [equation (19)].

APPENDIX B
The shape of the probability distribution

The shape of the probability distribution used in an AUC

approach can always be found numerically. In the case of

perfect quasicrystals, however, thanks to the relationship

between an AUC and an atomic surface, we can find such

distributions in a strict way. For instance, if we want to find a

distribution which describes the positions of atoms belonging

to a thick rhombus presented in Fig. 1 then, in the first step, we

need to establish five-dimensional indices of all vertices of

such a rhombus. In this case they are: A = [0, 0, 0, 0, 0], A1 =

[0, 1, 0, 0, 0], A2 = [0, 0, 1, 0, 0] and A3 = [0, 1, 1, 0, 0]. Then, we

need to find the part of an atomic surface for which all four

points A, A1, A2, A3 are within the boundaries of an atomic

surface. To achieve this we have to establish the perpendicular

(�x?, �y?, �z?) coordinates of relative distances between

these points. In this situation, they are: w1 = A1A = [0.5(� � 1),

0.5(� + 2)1/2, 1], w2 = A2A = ½0:5ð� � 1Þ;�0:5ð� þ 2Þ1=2; 1	, w3 =

A3A = ½ð� � 1Þ; 0; 2	. These vectors are used to cut out the

appropriate part of the atomic surface. The process is

presented in Fig. 2. The resulting area is triangular. We obtain

similar results for a thin rhombus. The coordinates of the
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Table 1
The coordinates of triangular areas of the Penrose tiling’s atomic surface
which describe the distribution of the chosen thick and thin rhombi.

These rhombi are shown in Fig. 1.

Thick rhombus Thin rhombus

z? = 1 z? = 1
x?L y?L x?S y?S

2�c1 0 c1 s1

�(� + 1)c1 (� � 1)s1 2�c1 0
�(� + 1)c1 �(� � 1)s1 c1 �s1

c1 = cos (2�/5); s1 = sin(2�/5)



obtained areas for both thick and thin rhombi are given

in Table 1.

These areas projected onto physical space (or simply

rescaled) form an average unit cell for the structural units of

the Penrose tiling.

APPENDIX C
Fourier transform of a triangular distribution

The derivation of the structure factor involves computing a

Fourier transform of a triangular probability distribution of a

constant probability density. Let us assign numbers p = 1, 2

and 3 to the consecutive vertices of a triangle.

For a particular rhombus and a particular �, we can rewrite

equation (24) as

T kð Þ ¼
RR
�

exp i �xux þ �yuy

� �
 �
dux duy; ð35Þ

where ’0 as a constant value is omitted here.

If we denote a particular vertex by the index ‘p’ (i.e. the

coordinates are upx and upy) and the linear coefficient of the

line connecting vertices l and m as alm then the resulting

formula for the Fourier transform is

TðkÞ ¼
1

�y

D12 E2 � E1ð Þ þD23 E3 � E2ð Þ þD31 E1 � E3ð Þ

 �

;

ð36Þ

where

Dlm ¼
1

�x þ �yalm

; Ep ¼ exp i �xupx þ �yupy

� �
 �
:
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Wnęk, A., Wolny, J., Verger-Gaugry, J.-L. & Orzechowski, D. (2001).

Ferroelectrics, 250, 425–428.
Wolny, J. (1998). Philos. Mag. A, 77, 395–412.
Wolny, J. & Kozakowski, B. (2003). Acta Cryst. A59, 54–59.
Wolny, J., Kozakowski, B., Kuczera, P. & Takakur, H. (2008). Z.

Kristallogr. 223, 847–850.
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